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We obtain differential equations for the general case of longitudinal, torsional, and transverse 
oscillations of rods to some parts of whiehmassesarebeingaddedordetaehed. We solve cer- 
tain special problems concerning the oscillations of such rods of variable composition. Inde- 
riving generalized equations of oscillations of rods of variable composition we employ the as- 
sumption of planar sections, the assumption of small deformations, and other customary sim- 
plifications. We also employ the simplifying assumption of close action; i.e., we assume that 
the masses being detached and added interact with the rod only at the instant of direct contact. 
Forces of internal nonelastic resistance are not taken into account. We assume also that in 
the undeformed state the elastic axis is rectilinear and that the centers of gravity of cross sec- 
tions are not displaced from their initial positions relative to the cross sections. There may 
be a change of mass per unit length of the rod both on account of a change in density as well as 
on account of a change in area of a cross section, the latter being understood to be the union 
of the initial area of the cross section and the areas of the parts being addedanddetached. In 
addition, with the rod there may be associated particles of variable mass distributed continu- 
ously or discretely along the length of the rod. We assume that these particles do not interact 
among themselves but only with the rod. 

i. Equations of Longitudinal and Torsional Oscillations of Rods of Vari- 
ab I e C o m p o s i t i o n. We assume that in the case of longitudinal oscillations the particles being added 
(or detached) move along the axis of the rod with speeds of the same magnitude for one and the same rod 
cross section. In the case of torsional oscillations the principal reaction force vectors of particles being 
detached or added to a section are equal to zero, and their moments are parallel to the axis of the rod. It 
suffices to obtain the equation of longitudinal oscillations because the equation of torsional oscillations is 
obtainable from the former on the basis of known analogies. 

We introduce at first the equation of free oscillations of a rod of variable composition with noninter- 
acting particles of varying mass distributed along it. Let u(x, t) be the displacement of a cross section of 
the rod; F (x, t), the cross section area; E (x, t), the modulus of elasticity; re(x, t), mass per unit length of the 
rod at time t; m0(x , t), the mass of the continuously distributed noninteracting particles associatedwithaunit 
length of the rod at time t; v+(x, t) and v-(x, t), speeds of particles of the rod being added and detached; and 
v0+ (x, t) and v 0- (x, t), analogous speeds for particles associated with the rod. 

The equation of the longitudinal oscillations is obtained from the necessary condition for an extremum 
of the functional [1] 
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where  l and x a re ,  r e spec t ive ly ,  the length of the rod  and a coord ina te  m e a s u r e d  f r o m  an a r b i t r a r y  one of 
i ts  ends.  

The m a s s  m(x, t) of the rod p e r  unit  length and the m a s s  m0(x , t) of the cont inuous ly  d i s t r ibu ted  non-  
i n t e r ac t i ng  p a r t i c l e s  a s s o c i a t e d  with a unit  length  of the rod  at t ime  t a r e  given, r e spec t ive ly ,  by  

m (x,  t) = m ~ (x) + m + (x, t) + m -  (x,  t) 

m o (x, t) = mo ~ (z) § m0 + (x, t) § m0- (x, t) (1.2) 

Here  m + (x, t) ~" O, m -  (x, t) -< 0 a r e  the m a s s e s  of the p a r t i c l e s  being added and de tached  p e r  unit  length 
of the rod at  the t ime  t; m0 + (x, t) - O, m 0- (x, t) ~ 0 a r e  the m a s s e s  of non in te rac t ing  p a r t i c l e s  being added and 
de tached  p e r  uni t  length of the rod  at the t ime t; m~ is the ini t ia l  m a s s  of a unit  length of the rod;  m0~ 
is  the ini t ial  m a s s  of mutua l ly  non in te rac t ing  p a r t i c l e s  a s s o c i a t e d  with a unit  length of the rod.  

At the initial instant t = 0 

m + (x, O) = re-(x,  O) = O, ore+at > 0 ,  a,~-ot ~ 0  

mo+ (x, O) = mo- (x, O) = O, amo+at >~ O, omo-at ~ 0 

The terms on the right side of Eq. (i.i) represent the reactive forces of the particles being added and 

detached in their absolute motion,. 

Equation (i.i) may be written in the form 

O~u 0 Ou Om+ / + Ou Ore- Omo- ( u - - -  Ou (o: (1.31 = . - - W -  ~,v - -  
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The r ight  s ide of  Eq. (1.3) r e p r e s e n t s  the r eac t i ve  f o r c e s  of the p a r t i c l e s  in the i r  r e l a t ive  mot ion  as  
they a r e  added and de tached.  

When e x t e r i o r  f o r c e s  ac t  on the rod,  it is n e c e s s a r y  to i n t roduce  t e r m s  on the r ight  s ides  of Eqs .  (1.1) 
and (1.3) which take these  f o r c e s  into account .  

If variable discrete masses are associated with the rod at the points xl, x 2 ..... Xn, then the force with 
which the i-th mass acts on the rod is equal to 

d [ du ) drai+ dm i- _ 
= - -  ~ §  + - ? ~ v i  

H e r e  u(xi, t) is the d i sp l acemen t  of the c r o s s  sec t ion  with the coord ina te  xi; vi+(t), vi-( t )  a r e  the speeds  
of the p a r t i c l e s  of the i - t h  m a s s  (i = 1, 2 . . . . .  n) being added and detached;  mi + (t) >- 0, m i-  (t) - 0 a r e  the m a s s e s  
be ing  added and detached,  r e spec t i ve ly ,  to the p a r t i c l e  with the coord ina te  x i at the t ime  t. 

At  the ini t ial  ins tan t  t = 0 

dmi+ dm i- 
m i + ( 0 ) = m i - ( 0 ) = 0 '  ----dY - - > 0 '  dt ~ 0  ( i = t , 2  . . . . .  n)  

The mass of the discretely distributed particles at the time t is equal to 

,a~ (t) = ~ (m~" + rn~+ § mC) 
i=l i=i 

where mi~ is the initial mass of the particle associated with the rod at the point with coordinate x i. 

The equations of the longitudinal oscillations in this case take the form 

a ~, [ Ou(x~,t)~ a ( E F  au ~ _  at [ ( m - 4 - m 0 ) - ~ - ] §  ~ t  ~m~----gV--jz(x--x~)----gT-z\ Oz / - -  
i = 1  

n 
__ On+ v+ am- @mo + Om~- ___ 
--  at -} - - -gT-v-  +----gy-Vo+ §  go ~- ~' • (1.4) 

i=1 
[ dmi+ + dmi- Ui_~ ] 
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-t- m o ) - - g W  m i  dtZ - -  ~ \ Ox ] = 
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Orr~- Ou ~ ( d m  i du 
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dm i- 
dt ] }  ~ ( x -  xi)  

(1.5) 

In t h e s e  equa t ions  ~ i s  an  i m p u l s e  func t ion  of the  f i r s t  o r d e r .  

To ob ta in  the  e q u a t i o n s  of t o r s i o n a l  o s c i l l a t i o n s  of a rod  of v a r i a b l e  c o m p o s i t i o n  it i s  n e c e s s a r y  in the  
E q s .  (1.1), (1.3), (1.4), and (1.5) to r e p l a c e  the  qua n t i t i e s  c o r r e s p o n d i n g  to t r a n s l a t i o n a l  mo t ion  of a c r o s s  
s e c t i o n  b y  a n a l o g o u s  q u a n t i t i e s  f o r  r o t a t i o n a l  mo t ion .  

The  i n i t i a l  and  b o u n d a r y  cond i t i ons  f o r  t h e s e  equa t ions  a r e  f o r m e d  in the  s a m e  way  a s  fo r  the  e q u a -  
t i ons  of o s c i l l a t i o n s  of  r o d s  of c o n s t a n t  c o m p o s i t i o n  b e c a u s e  the  r e a c t i v e  f o r c e s  can  be  r e g a r d e d  a s  an  e x -  
t e r n a l  load .  

The  c a s e  should  be  no ted  in which  p a r t i c l e s  a r e  a d d e d  to and d e t a c h e d  f r o m  a h o m o g e n e o u s  rod  wi th  
z e r o  r e l a t i v e  s p e e d s .  H e r e  the d e n s i t y  and m o d u l u s  of  e l a s t i c i t y  of  the r o d  do not  v a r y ,  and the m a s s  p e r  
un i t  l eng th  of the  r o d  i s  equa l  to  

m(x ,  t) = pF 0 ( x ) / ( t ) ,  [ ( t ) > 0  

w h e r e  p i s  the  dens i t y ,  and F0(x) i s  the i n i t i a l  a r e a  of the  c r o s s  s e c t i o n .  

The  equa t ion  of  the o s c i l l a t i o n s  in  t h i s  c a s e  has  the  f o r m  

02u a 2 0 I ~  Ou \ E a2 
Ot~ - -  ~ ~ ~,/% ~ ) '  ~ = = const 

i . e . ,  the  o s c i l l a t i o n s  o c c u r  a s  if  t h e r e  w e r e  no add i t i on  o r  d e t a c h m e n t  of p a r t i c l e s .  Th i s  i s  due to the  f ac t  
tha t  the  a r e a s  of the  c r o s s  s e c t i o n s  change  in a s i m i l a r  way  with  the  t i m e .  

E x a m p l e .  We c o n s i d e r  the f r e e  o s c i l l a t i o n s  of  a r o d  whose  ends  a r e  f ixed .  The d e n s i t y  and modu lus  
of e l a s t i c i t y  a r e  c o n s t a n t .  A s e p a r a t i o n  of p a r t i c l e s  o c c u r s  wi th  the r e l a t i v e  s p e e d  

v - = ( 2 a - 4 - t ) O u / c 3 t  (ct > 0 )  

The a r e a  of a c r o s s  s e c t i o n  v a r i e s  wi th  the  t i m e  a c c o r d i n g  to the  law F = e - t .  A t  the i n i t i a l  i n s t a n t  

Ou (z, O) 
u (x, O) = h (z), at =/~(x) 

The  equa t ion  of the o s c i l l a t i o n s  of  the  r o d  t a k e s  the f o r m  

O~u Ou ~ O~. u E 
0t~ -4- 2a y - -  a ~ = 0, a ~ = - - ~  = const  

I t  i s  i d e n t i c a l  to  the  equa t ion  of  the  f r e e  o s c i l l a t i o n s  of  a rod  of  c o n s t a n t  c o m p o s i t i o n  wi th  a r e s i s t a n c e  
p r o p o r t i o n a l  to the  f i r s t  p o w e r  of the s p e e d  [2]. 

2 .  E q u a t i o n s  o f  T r a n s v e r s e  O s c i l l a t i o n s .  The  s p e e d s  of the p a r t i c l e s  b e i n g  d e t a c h e d  
and a d d e d  a r e  p e r p e n d i c u l a r  to  the  n e u t r a l  p l a n e .  F o r  the  m a g n i t u d e  of the v e l o c i t y  of the p a r t i c l e s  b e i n g  
a d d e d  (detached) we  t ake  the  m e a n  v a l u e  of  t he  s p e e d  of  the  p a r t i c l e s  be ing  a d d e d  (detached)  on bo th  s i d e s  
of  the n e u t r a l  p l ane .  To ob ta in  the  f r e e  d e f l e c t i o n a l  o s c i l l a t i o n s  of a rod  of v a r i a b l e  c o m p o s i t i o n  to which  
no d i s c r e t e  m a s s e s  a r e  a d j o i n e d  we f o r m  the func t iona l  

+ it 
t l o ~  

Om+ O r e - -  Omo+ + amo- Vo-]y ldxd  t - 4 - 2 [ ~ v + + ~ v  + ~ v o  + - - ~ - - -  
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where y(x, t) is the t r a n s v e r s e  d isp lacement  of the e las t ic  axis  of the rod; J0(x, t) is the moment  of iner t ia  
of a unit length of the rod, along with the mutual ly  noninteract ing pa r t i c l e s  fastened to it, re la t ive  to the cen-  
t r a l  axis  pe rpend icu la r  to the plane of oscil lat ions;  J(x, t) is the moment  of iner t ia  of a c ro s s  sect ion of the 
rod re la t ive  to the neutra l  axis  of the sect ion perpendicu la r  to the plane of osci l lat ions;  P(x, t) i s t he  s t rength  
of the longitudinal tensile force. 

The equation of the t r a n s v e r s e  osci l la t ions  of a rod of va r i ab le  composi t ion is the E u l e r  equation for  
the functional given above, namely,  

0 Oy 0 ~ O~y ~ 0 ~ O~y 

Oy Orn- 4_ Omo + + Omo- y _  0 p ] Ore+ v+ 
- -  o----Z - 5 7  = - - 5 7 -  + - - g T - - v - - - ~ V o  + - - ~ -  o 

If the reactive forces in the relative motion of the particles being added and detached are known, then 
Eq. (2.1) can be written in the form 

O~y Oy 

-~--[u.0m+ [ § - -  -"O-t-)OY T --5-[--~ Ore- / _ __ ._0_[_)_ ~ \  ( + __ .._5.~) ~Om~ \[ vo- - -  -O-i- 

If va r i ab le  m a s s e s  a r e  fas tened to the rod, the equations for  such osci l la t ions may  be obtained which 
a r e  analogous to E qs. (1.4) and (1.5) 

0-7-- (m + m0) ~ + i=l--3Y- mi dt 

~ ( Jo x v  ~ x ( E J  "a~y ~ o 
o,  ot - 5 2 ~  / + --5T --$~-/ - -  --5-;- ( P - ~  ) ~ v+ = ~ + (2.3) 

n + 
o, . -  O, o+ + Omo- _ { 

n . - 

o~u ~ o3 ( r ~'u 
(ra + m o ) - - ~  + Y,  m~ ~ (x - -  x~) - -  ~ \ . 0 - - $ ~ 1  + 

O~ + ~ 7 -  ( E ]  o~u ] o o~+ 

Ore- _ Oy Omo + ! + Oy __ Omo- [ _ )+ - ~- ~ V o  

In rods  whose length is  s ignif icantly l a r g e r  than the t r a n s v e r s e  d imensions  the ro t a to ry  iner t i a  can be 
neglected,  and in the Eqs.  (2.1)-(2.4) t e r m s  containing J0 can be omit ted.  

The init ial  and boundary conditions for  these  equations a r e  wr i t ten  in the same  way as  for  the equa-  
t ions of t r a n s v e r s e  osci l la t ions  of rods  of constant composi t ion.  

Example .  We cons ider  the f r ee  osci l la t ions  of a homogeneous rod of r ec tangu la r  section,  h inge-sup-  
por ted  at  i ts  ends. Ma te r i a l  of the s a m e  composi t ion  as that of the rod is  added on to the rod s y m m e t r i c a l l y  
with r e spec t  to i ts  neutra l  plane. The mean  re la t ive  speeds  a r e  equal to zero .  At the initial instant  

�9 Oy (x, O) 
y (z, O) = h @), Ot -- /5 (x) 

The th ickness  of a c r o s s  sec t ion  v a r i e s  accord ing  to the law h=2  ~ 3/~et. Consequently, 

J / F  ~- e ~t, E/p ~ a s = c o n s t  

We neglect  ro t a to ry  iner t ia .  The osci l la t ions  of such a rod a re  descr ibab le  by the equation 

O~Y + a~e -~t O~Y = 0  
Ot ~ Ox ~ 

By separa t ing  the v a r i a b l e s  we can obtain the solution of this equation in the f o r m  
ce  

y (x, t) = ~ [A~Io (p~e t) + B~Yo (p~et)l s i n  k~x 
l 
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l 
2!I]lIl(p~)-]-]2[l(Pk)tsJnk~X dx B~ Al p~ 

A ~ Io (p~) Y1 (p~) - -  I t  (p~) Y~ (p~) (~=1, ~,...) 

Here  I0, It, Y0, and Y1 a r e  Besse l  functions of the f i r s t  and second kinds [3]. 

We note, in conclusion, that the equations of osci l la t ions of rods of va r iab le  composi t ion differ  f r o m  
the equations of osci l la t ions  of rods  of constant  composi t ion in two essen t i a l  ways: 1) the coeff icients  fo r  
the der iva t ives  can be functions not only of the coordinates  but also of the t ime; 2) the reac t ive  fo r ce s  a r e  
added to the ex te rna l  loads.  

It should a lso  be noted that a number  of p rob l ems  which occur  in the applied theory  of osci l la t ions - 
p a r a m e t r i c  osci l la t ions,  au tomat ic  balancing by addition of m a s s e s ,  automat ic  damping of the osci l la t ions 
of b e a m s  by appl icat ion at the nodes of the osci l la t ions  (for example,  by the addition) of damping coatings,  
and other  examples  - may  be regarded  as specia l  c a s e s  of osci l la t ions  of rods  of va r iab le  composit ion.  
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